-
1 разработанный проект
1) General subject: Developed engineering design2) Military: elaborated draftУниверсальный русско-английский словарь > разработанный проект
-
2 доводить теорию до уровня
Mathematics: many years will elapse before the theory is developed to the point where it is useful in engineering design, the theory had to be developed to the point where it was useful in engineering design, the theory has to be developed to the point where it is useful in engineering designУниверсальный русско-английский словарь > доводить теорию до уровня
-
3 доводить до уровня
•Many years will elapse before the theory is developed to the point (or brought to the level) where it is useful in engineering design.
Русско-английский научно-технический словарь переводчика > доводить до уровня
-
4 доводить до уровня
•Many years will elapse before the theory is developed to the point (or brought to the level) where it is useful in engineering design.
Русско-английский научно-технический словарь переводчика > доводить до уровня
-
5 Kapp, Gisbert Johann Eduard Karl
SUBJECT AREA: Electricity[br]b. 2 September 1852 Mauer, Vienna, Austriad. 10 August 1922 Birmingham, England[br]Austrian (naturalized British in 1881) engineer and a pioneer of dynamo design, being particularly associated with the concept of the magnetic circuit.[br]Kapp entered the Polytechnic School in Zurich in 1869 and gained a mechanical engineering diploma. He became a member of the engineering staff at the Vienna International Exhibition of 1873, and then spent some time in the Austrian navy before entering the service of Gwynne \& Co. of London, where he designed centrifugal pumps and gas exhausters. Kapp resolved to become an electrical engineer after a visit to the Paris Electrical Exhibition of 1881 and in the following year was appointed Manager of the Crompton Co. works at Chelmsford. There he developed and patented the dynamo with compound field winding. Also at that time, with Crompton, he patented electrical measuring instruments with over-saturated electromagnets. He became a naturalized British subject in 1881.In 1886 Kapp's most influential paper was published. This described his concept of the magnetic circuit, providing for the first time a sound theoretical basis for dynamo design. The theory was also developed independently by J. Hopkinson. After commencing practice as a consulting engineer in 1884 he carried out design work on dynamos and also electricity-supply and -traction schemes in Germany, Italy, Norway, Russia and Switzerland. From 1891 to 1894 much of his time was spent designing a new generating station in Bristol, officially as Assistant to W.H. Preece. There followed an appointment in Germany as General Secretary of the Verband Deutscher Electrotechniker. For some years he edited the Electrotechnische Zeitschrift and was also a part-time lecturer at the Charlottenberg Technical High School in Berlin. In 1904 Kapp was invited to accept the new Chair of Electrical Engineering at the University of Birmingham, which he occupied until 1919. He was the author of several books on electrical machine and transformer design.[br]Principal Honours and DistinctionsInstitution of Civil Engineers Telford Medal 1886 and 1888. President, Institution of Electrical Engineers 1909.Bibliography10 October 1882, with R.E.B.Crompton, British patent no. 4,810; (the compound wound dynamo).1886, "Modern continuous current dynamo electric machines and their engines", Proceedings of the Institution of Civil Engineers 83: 123–54.Further ReadingD.G.Tucker, 1989, "A new archive of Gisbert Kapp papers", Proceedings of the Meeting on History of Electrical Engineering, IEE 4/1–4/11 (a transcript of an autobiography for his family).D.G.Tucker, 1973, Gisbert Kapp 1852–1922, Birmingham: Birmingham University (includes a bibliography of his most important publications).GWBiographical history of technology > Kapp, Gisbert Johann Eduard Karl
-
6 Elder, John
[br]b. 9 March 1824 Glasgow, Scotlandd. 17 September 1869 London, England[br]Scottish engineer who introduced the compound steam engine to ships and established an important shipbuilding company in Glasgow.[br]John was the third son of David Elder. The father came from a family of millwrights and moved to Glasgow where he worked for the well-known shipbuilding firm of Napier's and was involved with improving marine engines. John was educated at Glasgow High School and then for a while at the Department of Civil Engineering at Glasgow University, where he showed great aptitude for mathematics and drawing. He spent five years as an apprentice under Robert Napier followed by two short periods of activity as a pattern-maker first and then a draughtsman in England. He returned to Scotland in 1849 to become Chief Draughtsman to Napier, but in 1852 he left to become a partner with the Glasgow general engineering company of Randolph Elliott \& Co. Shortly after his induction (at the age of 28), the engineering firm was renamed Randolph Elder \& Co.; in 1868, when the partnership expired, it became known as John Elder \& Co. From the outset Elder, with his partner, Charles Randolph, approached mechanical (especially heat) engineering in a rigorous manner. Their knowledge and understanding of entropy ensured that engine design was not a hit-and-miss affair, but one governed by recognition of the importance of the new kinetic theory of heat and with it a proper understanding of thermodynamic principles, and by systematic development. In this Elder was joined by W.J.M. Rankine, Professor of Civil Engineering and Mechanics at Glasgow University, who helped him develop the compound marine engine. Elder and Randolph built up a series of patents, which guaranteed their company's commercial success and enabled them for a while to be the sole suppliers of compound steam reciprocating machinery. Their first such engine at sea was fitted in 1854 on the SS Brandon for the Limerick Steamship Company; the ship showed an improved performance by using a third less coal, which he was able to reduce still further on later designs.Elder developed steam jacketing and recognized that, with higher pressures, triple-expansion types would be even more economical. In 1862 he patented a design of quadruple-expansion engine with reheat between cylinders and advocated the importance of balancing reciprocating parts. The effect of his improvements was to greatly reduce fuel consumption so that long sea voyages became an economic reality.His yard soon reached dimensions then unequalled on the Clyde where he employed over 4,000 workers; Elder also was always interested in the social welfare of his labour force. In 1860 the engine shops were moved to the Govan Old Shipyard, and again in 1864 to the Fairfield Shipyard, about 1 mile (1.6 km) west on the south bank of the Clyde. At Fairfield, shipbuilding was commenced, and with the patents for compounding secure, much business was placed for many years by shipowners serving long-distance trades such as South America; the Pacific Steam Navigation Company took up his ideas for their ships. In later years the yard became known as the Fairfield Shipbuilding and Engineering Company Ltd, but it remains today as one of Britain's most efficient shipyards and is known now as Kvaerner Govan Ltd.In 1869, at the age of only 45, John Elder was unanimously elected President of the Institution of Engineers and Shipbuilders in Scotland; however, before taking office and giving his eagerly awaited presidential address, he died in London from liver disease. A large multitude attended his funeral and all the engineering shops were silent as his body, which had been brought back from London to Glasgow, was carried to its resting place. In 1857 Elder had married Isabella Ure, and on his death he left her a considerable fortune, which she used generously for Govan, for Glasgow and especially the University. In 1883 she endowed the world's first Chair of Naval Architecture at the University of Glasgow, an act which was reciprocated in 1901 when the University awarded her an LLD on the occasion of its 450th anniversary.[br]Principal Honours and DistinctionsPresident, Institution of Engineers and Shipbuilders in Scotland 1869.Further ReadingObituary, 1869, Engineer 28.1889, The Dictionary of National Biography, London: Smith Elder \& Co. W.J.Macquorn Rankine, 1871, "Sketch of the life of John Elder" Transactions of theInstitution of Engineers and Shipbuilders in Scotland.Maclehose, 1886, Memoirs and Portraits of a Hundred Glasgow Men.The Fairfield Shipbuilding and Engineering Works, 1909, London: Offices of Engineering.P.M.Walker, 1984, Song of the Clyde, A History of Clyde Shipbuilding, Cambridge: PSL.R.L.Hills, 1989, Power from Steam. A History of the Stationary Steam Engine, Cambridge: Cambridge University Press (covers Elder's contribution to the development of steam engines).RLH / FMW -
7 Ohain, Hans Joachim Pabst von
SUBJECT AREA: Aerospace[br]b. 14 December 1911 Dessau, Germany[br]German engineer who designed the first jet engine to power an aeroplane successfully.[br]Von Ohain studied engineering at the University of Göttingen, where he carried out research on gas-turbine engines, and centrifugal compressors in particular. In 1935 he patented a design for a jet engine (in Britain, Frank Whittle patented his jet-engine design in 1930). Von Ohain was recruited by the Heinkel company in 1936 to develop an engine for a jet aircraft. Ernst Heinkel was impressed by von Ohain's ideas and gave the project a high priority. The first engine was bench tested in September 1937. A more powerful version was developed and tested in air, suspended beneath a Heinkel dive-bomber, during the spring of 1939. A new airframe was designed to house the revolutionary power plant and designated the Heinkel He 178. A short flight was made on 24 August 1939 and the first recognized flight on 27 August. This important achievement received only a lukewarm response from the German authorities. Von Ohain's turbojet engine had a centrifugal compressor and developed a thrust of 380 kg (837 lb). An improved, more powerful, engine was developed and installed in a new twin-engined fighter design, the He 280. This flew on 2 April 1941 but never progressed beyond the prototype stage. By this time two other German companies, BMW and Junkers, were constructing successful turbojets with axial compressors: luckily for the Allies, Hitler was reluctant to pour his hard-pressed resources into this new breed of jet fighters. After the war, von Ohain emigrated to the United States and worked for the Air Force there.[br]Bibliography1929, "The evolution and future of aeropropulsion system", The Jet Age. 40 Years of Jet Aviation, Washington, DC: National Air \& Space Museum, Smithsonian Institution.Further ReadingVon Ohain's work is described in many books covering the history of aviation, and aero engines in particular, for example: R.Schlaifer and S.D.Heron, 1950, Development of Aircraft Engines and fuels, Boston. G.G.Smith, 1955, Gas Turbines and Jet Propulsion.Grover Heiman, 1963, Jet Pioneers.JDSBiographical history of technology > Ohain, Hans Joachim Pabst von
-
8 Paul, Robert William
[br]b. 3 October 1869 Highbury, London, Englandd. 28 March 1943 London, England[br]English scientific instrument maker, inventor of the Unipivot electrical measuring instrument, and pioneer of cinematography.[br]Paul was educated at the City of London School and Finsbury Technical College. He worked first for a short time in the Bell Telephone Works in Antwerp, Belgium, and then in the electrical instrument shop of Elliott Brothers in the Strand until 1891, when he opened an instrument-making business at 44 Hatton Garden, London. He specialized in the design and manufacture of electrical instruments, including the Ayrton Mather galvanometer. In 1902, with a purpose-built factory, he began large batch production of his instruments. He also opened a factory in New York, where uncalibrated instruments from England were calibrated for American customers. In 1903 Paul introduced the Unipivot galvanometer, in which the coil was supported at the centre of gravity of the moving system on a single pivot. The pivotal friction was less than in a conventional instrument and could be used without accurate levelling, the sensitivity being far beyond that of any pivoted galvanometer then in existence.In 1894 Paul was asked by two entrepreneurs to make copies of Edison's kinetoscope, the pioneering peep-show moving-picture viewer, which had just arrived in London. Discovering that Edison had omitted to patent the machine in England, and observing that there was considerable demand for the machine from show-people, he began production, making six before the end of the year. Altogether, he made about sixty-six units, some of which were exported. Although Edison's machine was not patented, his films were certainly copyrighted, so Paul now needed a cinematographic camera to make new subjects for his customers. Early in 1895 he came into contact with Birt Acres, who was also working on the design of a movie camera. Acres's design was somewhat impractical, but Paul constructed a working model with which Acres filmed the Oxford and Cambridge Boat Race on 30 March, and the Derby at Epsom on 29 May. Paul was unhappy with the inefficient design, and developed a new intermittent mechanism based on the principle of the Maltese cross. Despite having signed a ten-year agreement with Paul, Acres split with him on 12 July 1895, after having unilaterally patented their original camera design on 27 May. By the early weeks of 1896, Paul had developed a projector mechanism that also used the Maltese cross and which he demonstrated at the Finsbury Technical College on 20 February 1896. His Theatrograph was intended for sale, and was shown in a number of venues in London during March, notably at the Alhambra Theatre in Leicester Square. There the renamed Animatographe was used to show, among other subjects, the Derby of 1896, which was won by the Prince of Wales's horse "Persimmon" and the film of which was shown the next day to enthusiastic crowds. The production of films turned out to be quite profitable: in the first year of the business, from March 1896, Paul made a net profit of £12,838 on a capital outlay of about £1,000. By the end of the year there were at least five shows running in London that were using Paul's projectors and screening films made by him or his staff.Paul played a major part in establishing the film business in England through his readiness to sell apparatus at a time when most of his rivals reserved their equipment for sole exploitation. He went on to become a leading producer of films, specializing in trick effects, many of which he pioneered. He was affectionately known in the trade as "Daddy Paul", truly considered to be the "father" of the British film industry. He continued to appreciate fully the possibilities of cinematography for scientific work, and in collaboration with Professor Silvanus P.Thompson films were made to illustrate various phenomena to students.Paul ended his involvement with film making in 1910 to concentrate on his instrument business; on his retirement in 1920, this was amalgamated with the Cambridge Instrument Company. In his will he left shares valued at over £100,000 to form the R.W.Paul Instrument Fund, to be administered by the Institution of Electrical Engineers, of which he had been a member since 1887. The fund was to provide instruments of an unusual nature to assist physical research.[br]Principal Honours and DistinctionsFellow of the Physical Society 1920. Institution of Electrical Engineers Duddell Medal 1938.Bibliography17 March 1903, British patent no. 6,113 (the Unipivot instrument).1931, "Some electrical instruments at the Faraday Centenary Exhibition 1931", Journal of Scientific Instruments 8:337–48.Further ReadingObituary, 1943, Journal of the Institution of Electrical Engineers 90(1):540–1. P.Dunsheath, 1962, A History of Electrical Engineering, London: Faber \& Faber, pp.308–9 (for a brief account of the Unipivot instrument).John Barnes, 1976, The Beginnings of Cinema in Britain, London. Brian Coe, 1981, The History of Movie Photography, London.BC / GW -
9 Blumlein, Alan Dower
SUBJECT AREA: Aerospace, Broadcasting, Electronics and information technology, Photography, film and optics, Recording, Telecommunications[br]b. 29 June 1903 Hampstead, London, Englandd. 7 June 1942[br]English electronics engineer, developer of telephone equipment, highly linear electromechanical recording and reproduction equipment, stereo techniques, video and radar technology.[br]He was a very bright scholar and received a BSc in electrical technology from City and Guilds College in 1923. He joined International Western Electric (later to become Standard Telephone and Cables) in 1924 after a period as an instructor/demonstrator at City and Guilds. He was instrumental in the design of telephone measuring equipment and in international committee work for standards for long-distance telephony.From 1929 Blumlein was employed by the Columbia Graphophone Company to develop an electric recording cutterhead that would be independent of Western Electric's patents for the system developed by Maxfield and Harrison. He attacked the problems in a most systematic fashion, and within a year he had developed a moving-coil cutterhead that was much more linear than the iron-cored systems known at the time. Eventually Blumlein designed a complete line of recording equipment, from microphone and through-power amplifiers. The design was used by Columbia; after the merger with the Gramophone Company in 1931 to form Electrical and Musical Industries Ltd (later known as EMI) it became the company standard, certainly for coarse-groove records, until c.1950.Blumlein became interested in stereophony (binaural sound), and developed and demonstrated a complete line of equipment, from correctly placed microphones via two-channel records and stereo pick-ups to correctly placed loudspeakers. The advent of silent surfaces of vinyl records made this approach commercial from the late 1950s. His approach was independent and quite different from that of A.C. Keller.His extreme facility for creating innovative solutions to electronic problems was used in EMI's development from 1934 to 1938 of the electronic television system, which became the BBC standard of 405 lines after the Second World War, when television broadcasting again became possible. Independent of official requirements, EMI developed a 60 MHz radar system and Blumlein was involved in the development of a centimetric radar and display system. It was during testing of this aircraft mounted equipment that he was killed in a crash.[br]BibliographyBlumlein was inventor or co-inventor of well over 120 patents, a complete list of which is to be found in Burns (1992; see below). The major sound-recording achievements are documented by British patent nos. 350,954, 350,998, 363,627 (highly linear cutterhead, 1930) and 394,325 (reads like a textbook on stereo technology, 1931).Further ReadingThe definitive biography of Blumlein has not yet been written; the material seems to have been collected, but is not yet available. However, R.W.Burns, 1992, "A.D.Blumlein, engineer extraordinary", Engineering Science and Education Journal (February): 19– 33 is a thorough account. Also B.J.Benzimra, 1967, "A.D. Blumlein: an electronics genius", Electronics \& Power (June): 218–24 provides an interesting summary.GB-N -
10 Hopkinson, John
[br]b. 27 July 1849 Manchester, Englandd. 27 August 1898 Petite Dent de Veisivi, Switzerland[br]English mathematician and electrical engineer who laid the foundations of electrical machine design.[br]After attending Owens College, Manchester, Hopkinson was admitted to Trinity College, Cambridge, in 1867 to read for the Mathematical Tripos. An appointment in 1872 with the lighthouse department of the Chance Optical Works in Birmingham directed his attention to electrical engineering. His most noteworthy contribution to lighthouse engineering was an optical system to produce flashing lights that distinguished between individual beacons. His extensive researches on the dielectric properties of glass were recognized when he was elected to a Fellowship of the Royal Society at the age of 29. Moving to London in 1877 he became established as a consulting engineer at a time when electricity supply was about to begin on a commercial scale. During the remainder of his life, Hopkinson's researches resulted in fundamental contributions to electrical engineering practice, dynamo design and alternating current machine theory. In making a critical study of the Edison dynamo he developed the principle of the magnetic circuit, a concept also arrived at by Gisbert Kapp around the same time. Hopkinson's improvement of the Edison dynamo by reducing the length of the field magnets almost doubled its output. In 1890, in addition to-his consulting practice, Hopkinson accepted a post as the first Professor of Electrical Engineering and Head of the Siemens laboratory recently established at King's College, London. Although he was not involved in lecturing, the position gave him the necessary facilities and staff and student assistance to continue his researches. Hopkinson was consulted on many proposals for electric traction and electricity supply, including schemes in London, Manchester, Liverpool and Leeds. He also advised Mather and Platt when they were acting as contractors for the locomotives and generating plant for the City and South London tube railway. As early as 1882 he considered that an ideal method of charging for the supply of electricity should be based on a two-part tariff, with a charge related to maximum demand together with a charge for energy supplied. Hopkinson was one the foremost expert witnesses of his day in patent actions and was himself the patentee of over forty inventions, of which the three-wire system of distribution and the series-parallel connection of traction motors were his most successful. Jointly with his brother Edward, John Hopkinson communicated the outcome of his investigations to the Royal Society in a paper entitled "Dynamo Electric Machinery" in 1886. In this he also described the later widely used "back to back" test for determining the characteristics of two identical machines. His interest in electrical machines led him to more fundamental research on magnetic materials, including the phenomenon of recalescence and the disappearance of magnetism at a well-defined temperature. For his work on the magnetic properties of iron, in 1890 he was awarded the Royal Society Royal Medal. He was a member of the Alpine Club and a pioneer of rock climbing in Britain; he died, together with three of his children, in a climbing accident.[br]Principal Honours and DistinctionsFRS 1878. Royal Society Royal Medal 1890. President, Institution of Electrical Engineers 1890 and 1896.Bibliography7 July 1881, British patent no. 2,989 (series-parallel control of traction motors). 27 July 1882, British patent no. 3,576 (three-wire distribution).1901, Original Papers by the Late J.Hopkinson, with a Memoir, ed. B.Hopkinson, 2 vols, Cambridge.Further ReadingJ.Greig, 1970, John Hopkinson Electrical Engineer, London: Science Museum and HMSO (an authoritative account).—1950, "John Hopkinson 1849–1898", Engineering 169:34–7, 62–4.GW -
11 Churchward, George Jackson
[br]b. 31 January 1857 Stoke Gabriel, Devon, Englandd. 19 December 1933 Swindon, Wiltshire, England[br]English mechanical engineer who developed for the Great Western Railway a range of steam locomotives of the most advanced design of its time.[br]Churchward was articled to the Locomotive Superintendent of the South Devon Railway in 1873, and when the South Devon was absorbed by the Great Western Railway in 1876 he moved to the latter's Swindon works. There he rose by successive promotions to become Works Manager in 1896, and in 1897 Chief Assistant to William Dean, who was Locomotive Carriage and Wagon Superintendent, in which capacity Churchward was allowed extensive freedom of action. Churchward eventually succeeded Dean in 1902: his title changed to Chief Mechanical Engineer in 1916.In locomotive design, Churchward adopted the flat-topped firebox invented by A.J.Belpaire of the Belgian State Railways and added a tapered barrel to improve circulation of water between the barrel and the firebox legs. He designed valves with a longer stroke and a greater lap than usual, to achieve full opening to exhaust. Passenger-train weights had been increasing rapidly, and Churchward produced his first 4–6– 0 express locomotive in 1902. However, he was still developing the details—he had a flair for selecting good engineering practices—and to aid his development work Churchward installed at Swindon in 1904 a stationary testing plant for locomotives. This was the first of its kind in Britain and was based on the work of Professor W.F.M.Goss, who had installed the first such plant at Purdue University, USA, in 1891. For comparison with his own locomotives Churchward obtained from France three 4–4–2 compound locomotives of the type developed by A. de Glehn and G. du Bousquet. He decided against compounding, but he did perpetuate many of the details of the French locomotives, notably the divided drive between the first and second pairs of driving wheels, when he introduced his four-cylinder 4–6–0 (the Star class) in 1907. He built a lone 4–6–2, the Great Bear, in 1908: the wheel arrangement enabled it to have a wide firebox, but the type was not perpetuated because Welsh coal suited narrow grates and 4–6–0 locomotives were adequate for the traffic. After Churchward retired in 1921 his successor, C.B.Collett, was to enlarge the Star class into the Castle class and then the King class, both 4–6–0s, which lasted almost as long as steam locomotives survived in service. In Church ward's time, however, the Great Western Railway was the first in Britain to adopt six-coupled locomotives on a large scale for passenger trains in place of four-coupled locomotives. The 4–6–0 classes, however, were but the most celebrated of a whole range of standard locomotives of advanced design for all types of traffic and shared between them many standardized components, particularly boilers, cylinders and valve gear.[br]Further ReadingH.C.B.Rogers, 1975, G.J.Churchward. A Locomotive Biography, London: George Allen \& Unwin (a full-length account of Churchward and his locomotives, and their influence on subsequent locomotive development).C.Hamilton Ellis, 1958, Twenty Locomotive Men, Shepperton: Ian Allan, Ch. 20 (a good brief account).Sir William Stanier, 1955, "George Jackson Churchward", Transactions of the NewcomenSociety 30 (a unique insight into Churchward and his work, from the informed viewpoint of his former subordinate who had risen to become Chief Mechanical Engineer of the London, Midland \& Scottish Railway).PJGRBiographical history of technology > Churchward, George Jackson
-
12 Ricardo, Sir Harry Ralph
[br]b. 26 January 1885 London, Englandd. 18 May 1974 Graffham, Sussex, England[br]English mechanical engineer; researcher, designer and developer of internal combustion engines.[br]Harry Ricardo was the eldest child and only son of Halsey Ricardo (architect) and Catherine Rendel (daughter of Alexander Rendel, senior partner in the firm of consulting civil engineers that later became Rendel, Palmer and Tritton). He was educated at Rugby School and at Cambridge. While still at school, he designed and made a steam engine to drive his bicycle, and by the time he went up to Cambridge in 1903 he was a skilled craftsman. At Cambridge, he made a motor cycle powered by a petrol engine of his own design, and with this he won a fuel-consumption competition by covering almost 40 miles (64 km) on a quart (1.14 1) of petrol. This brought him to the attention of Professor Bertram Hopkinson, who invited him to help with research on turbulence and pre-ignition in internal combustion engines. After leaving Cambridge in 1907, he joined his grandfather's firm and became head of the design department for mechanical equipment used in civil engineering. In 1916 he was asked to help with the problem of loading tanks on to railway trucks. He was then given the task of designing and organizing the manufacture of engines for tanks, and the success of this enterprise encouraged him to set up his own establishment at Shoreham, devoted to research on, and design and development of, internal combustion engines.Leading on from the work with Hopkinson were his discoveries on the suppression of detonation in spark-ignition engines. He noted that the current paraffinic fuels were more prone to detonation than the aromatics, which were being discarded as they did not comply with the existing specifications because of their high specific gravity. He introduced the concepts of "highest useful compression ratio" (HUCR) and "toluene number" for fuel samples burned in a special variable compression-ratio engine. The toluene number was the proportion of toluene in heptane that gave the same HUCR as the fuel sample. Later, toluene was superseded by iso-octane to give the now familiar octane rating. He went on to improve the combustion in side-valve engines by increasing turbulence, shortening the flame path and minimizing the clearance between piston and head by concentrating the combustion space over the valves. By these means, the compression ratio could be increased to that used by overhead-valve engines before detonation intervened. The very hot poppet valve restricted the advancement of all internal combustion engines, so he turned his attention to eliminating it by use of the single sleeve-valve, this being developed with support from the Air Ministry. By the end of the Second World War some 130,000 such aero-engines had been built by Bristol, Napier and Rolls-Royce before the piston aero-engine was superseded by the gas turbine of Whittle. He even contributed to the success of the latter by developing a fuel control system for it.Concurrent with this was work on the diesel engine. He designed and developed the engine that halved the fuel consumption of London buses. He invented and perfected the "Comet" series of combustion chambers for diesel engines, and the Company was consulted by the vast majority of international internal combustion engine manufacturers. He published and lectured widely and fully deserved his many honours; he was elected FRS in 1929, was President of the Institution of Mechanical Engineers in 1944–5 and was knighted in 1948. This shy and modest, though very determined man was highly regarded by all who came into contact with him. It was said that research into internal combustion engines, his family and boats constituted all that he would wish from life.[br]Principal Honours and DistinctionsKnighted 1948. FRS 1929. President, Institution of Mechanical Engineers 1944–5.Bibliography1968, Memo \& Machines. The Pattern of My Life, London: Constable.Further ReadingSir William Hawthorne, 1976, "Harry Ralph Ricardo", Biographical Memoirs of Fellows of the Royal Society 22.JBBiographical history of technology > Ricardo, Sir Harry Ralph
-
13 Smeaton, John
SUBJECT AREA: Civil engineering, Mechanical, pneumatic and hydraulic engineering, Steam and internal combustion engines[br]b. 8 June 1724 Austhorpe, near Leeds, Yorkshire, Englandd. 28 October 1792 Austhorpe, near Leeds, Yorkshire, England[br]English mechanical and civil engineer.[br]As a boy, Smeaton showed mechanical ability, making for himself a number of tools and models. This practical skill was backed by a sound education, probably at Leeds Grammar School. At the age of 16 he entered his father's office; he seemed set to follow his father's profession in the law. In 1742 he went to London to continue his legal studies, but he preferred instead, with his father's reluctant permission, to set up as a scientific instrument maker and dealer and opened a shop of his own in 1748. About this time he began attending meetings of the Royal Society and presented several papers on instruments and mechanical subjects, being elected a Fellow in 1753. His interests were turning towards engineering but were informed by scientific principles grounded in careful and accurate observation.In 1755 the second Eddystone lighthouse, on a reef some 14 miles (23 km) off the English coast at Plymouth, was destroyed by fire. The President of the Royal Society was consulted as to a suitable engineer to undertake the task of constructing a new one, and he unhesitatingly suggested Smeaton. Work began in 1756 and was completed in three years to produce the first great wave-swept stone lighthouse. It was constructed of Portland stone blocks, shaped and pegged both together and to the base rock, and bonded by hydraulic cement, scientifically developed by Smeaton. It withstood the storms of the English Channel for over a century, but by 1876 erosion of the rock had weakened the structure and a replacement had to be built. The upper portion of Smeaton's lighthouse was re-erected on a suitable base on Plymouth Hoe, leaving the original base portion on the reef as a memorial to the engineer.The Eddystone lighthouse made Smeaton's reputation and from then on he was constantly in demand as a consultant in all kinds of engineering projects. He carried out a number himself, notably the 38 mile (61 km) long Forth and Clyde canal with thirty-nine locks, begun in 1768 but for financial reasons not completed until 1790. In 1774 he took charge of the Ramsgate Harbour works.On the mechanical side, Smeaton undertook a systematic study of water-and windmills, to determine the design and construction to achieve the greatest power output. This work issued forth as the paper "An experimental enquiry concerning the natural powers of water and wind to turn mills" and exerted a considerable influence on mill design during the early part of the Industrial Revolution. Between 1753 and 1790 Smeaton constructed no fewer than forty-four mills.Meanwhile, in 1756 he had returned to Austhorpe, which continued to be his home base for the rest of his life. In 1767, as a result of the disappointing performance of an engine he had been involved with at New River Head, Islington, London, Smeaton began his important study of the steam-engine. Smeaton was the first to apply scientific principles to the steam-engine and achieved the most notable improvements in its efficiency since its invention by Newcomen, until its radical overhaul by James Watt. To compare the performance of engines quantitatively, he introduced the concept of "duty", i.e. the weight of water that could be raised 1 ft (30 cm) while burning one bushel (84 lb or 38 kg) of coal. The first engine to embody his improvements was erected at Long Benton colliery in Northumberland in 1772, with a duty of 9.45 million pounds, compared to the best figure obtained previously of 7.44 million pounds. One source of heat loss he attributed to inaccurate boring of the cylinder, which he was able to improve through his close association with Carron Ironworks near Falkirk, Scotland.[br]Principal Honours and DistinctionsFRS 1753.Bibliography1759, "An experimental enquiry concerning the natural powers of water and wind to turn mills", Philosophical Transactions of the Royal Society.Towards the end of his life, Smeaton intended to write accounts of his many works but only completed A Narrative of the Eddystone Lighthouse, 1791, London.Further ReadingS.Smiles, 1874, Lives of the Engineers: Smeaton and Rennie, London. A.W.Skempton, (ed.), 1981, John Smeaton FRS, London: Thomas Telford. L.T.C.Rolt and J.S.Allen, 1977, The Steam Engine of Thomas Newcomen, 2nd edn, Hartington: Moorland Publishing, esp. pp. 108–18 (gives a good description of his work on the steam-engine).LRD -
14 Bollée, Ernest-Sylvain
[br]b. 19 July 1814 Clefmont (Haute-Marne), Franced. 11 September 1891 Le Mans, France[br]French inventor of the rotor-stator wind engine and founder of the Bollée manufacturing industry.[br]Ernest-Sylvain Bollée was the founder of an extensive dynasty of bellfounders based in Le Mans and in Orléans. He and his three sons, Amédée (1844–1917), Ernest-Sylvain fils (1846–1917) and Auguste (1847-?), were involved in work and patents on steam-and petrol-driven cars, on wind engines and on hydraulic rams. The presence of the Bollées' car industry in Le Mans was a factor in the establishment of the car races that are held there.In 1868 Ernest-Sylvain Bollée père took out a patent for a wind engine, which at that time was well established in America and in England. In both these countries, variable-shuttered as well as fixed-blade wind engines were in production and patented, but the Ernest-Sylvain Bollée patent was for a type of wind engine that had not been seen before and is more akin to the water-driven turbine of the Jonval type, with its basic principle being parallel to the "rotor" and "stator". The wind drives through a fixed ring of blades on to a rotating ring that has a slightly greater number of blades. The blades of the fixed ring are curved in the opposite direction to those on the rotating blades and thus the air is directed onto the latter, causing it to rotate at a considerable speed: this is the "rotor". For greater efficiency a cuff of sheet iron can be attached to the "stator", giving a tunnel effect and driving more air at the "rotor". The head of this wind engine is turned to the wind by means of a wind-driven vane mounted in front of the blades. The wind vane adjusts the wind angle to enable the wind engine to run at a constant speed.The fact that this wind engine was invented by the owner of a brass foundry, with all the gear trains between the wind vane and the head of the tower being of the highest-quality brass and, therefore, small in scale, lay behind its success. Also, it was of prefabricated construction, so that fixed lengths of cast-iron pillar were delivered, complete with twelve treads of cast-iron staircase fixed to the outside and wrought-iron stays. The drive from the wind engine was taken down the inside of the pillar to pumps at ground level.Whilst the wind engines were being built for wealthy owners or communes, the work of the foundry continued. The three sons joined the family firm as partners and produced several steam-driven vehicles. These vehicles were the work of Amédée père and were l'Obéissante (1873); the Autobus (1880–3), of which some were built in Berlin under licence; the tram Bollée-Dalifol (1876); and the private car La Mancelle (1878). Another important line, in parallel with the pumping mechanism required for the wind engines, was the development of hydraulic rams, following the Montgolfier patent. In accordance with French practice, the firm was split three ways when Ernest-Sylvain Bollée père died. Amédée père inherited the car side of the business, but it is due to Amédée fils (1867– 1926) that the principal developments in car manufacture came into being. He developed the petrol-driven car after the impetus given by his grandfather, his father and his uncle Ernest-Sylvain fils. In 1887 he designed a four-stroke single-cylinder engine, although he also used engines designed by others such as Peugeot. He produced two luxurious saloon cars before putting Torpilleur on the road in 1898; this car competed in the Tour de France in 1899. Whilst designing other cars, Amédée's son Léon (1870–1913) developed the Voiturette, in 1896, and then began general manufacture of small cars on factory lines. The firm ceased work after a merger with the English firm of Morris in 1926. Auguste inherited the Eolienne or wind-engine side of the business; however, attracted to the artistic life, he sold out to Ernest Lebert in 1898 and settled in the Paris of the Impressionists. Lebert developed the wind-engine business and retained the basic "stator-rotor" form with a conventional lattice tower. He remained in Le Mans, carrying on the business of the manufacture of wind engines, pumps and hydraulic machinery, describing himself as a "Civil Engineer".The hydraulic-ram business fell to Ernest-Sylvain fils and continued to thrive from a solid base of design and production. The foundry in Le Mans is still there but, more importantly, the bell foundry of Dominique Bollée in Saint-Jean-de-Braye in Orléans is still at work casting bells in the old way.[br]Further ReadingAndré Gaucheron and J.Kenneth Major, 1985, The Eolienne Bollée, The International Molinological Society.Cénomane (Le Mans), 11, 12 and 13 (1983 and 1984).KM -
15 Bode, Hendrik Wade
[br]b. 24 December 1905 Madison, Wisconsin, USAd. 21 June 1982 Cambridge, Massachusetts, USA[br]American engineer who developed an extensive theoretical understanding of the behaviour of electronic circuits.[br]Bode received his bachelor's and master's degrees from Ohio State University in 1924 and 1926, respectively, and his PhD from Columbia University, New York, in 1935. In 1926 he joined the Bell Telephone Laboratories, where he made many theoretical contributions to the understanding of the behaviour of electronic circuits and, in particular, in conjunction with Harry Nyquist, of the conditions under which amplifier circuits become unstable.During the Second World War he worked on the design of gun control systems and afterwards was a member of a team that worked with Douglas Aircraft to develop the Nike anti-aircraft missile. A member of the Bell Laboratories Mathematical Research Group from 1929, he became its Director in 1952, and then Director of Physical Sciences. Finally he became Vice-President of the Laboratories, with responsibility for systems engineering, and a director of Bellcomm, a Bell company involved in the Moon-landing programme. When he retired from Bell in 1967, he became Professor of Systems Engineering at Harvard University.[br]Principal Honours and DistinctionsPresidential Certificate of Merit 1946. Institute of Electrical and Electronics Engineers Edison Medal 1969.Bibliography1940, "Relation between attenuation and phase in feedback amplifier design", Bell System Technical Journal 19:421.1945, Network Analysis and Feedback Amplifier Design, New York: Van Nostrand.1950, with C.E.Shannon, "A simplified derivation of linear least squares smoothing and prediction theory", Proceedings of the Institute of Radio Engineers 38:417.1961, "Feedback. The history of an idea", Proceedings of the Symposium on Active Networks and Feedback Systems, Brooklyn Polytechnic.1971, Synergy: Technical Integration and Technical Innovation in the Bell System Bell Laboratories, Bell Telephone Laboratories (provides background on his activities at Bell).Further ReadingP.C.Mahon, 1975, Mission Communications, Bell Telephone Laboratories. See also Black, Harold Stephen; Shannon, Claude Elwood.KF -
16 Paxton, Sir Joseph
[br]b. 3 August 1801 Milton Bryant, Bedfordshire, Englandd. 8 June 1865 Sydenham, London, England[br]English designer of the Crystal Palace, the first large-scale prefabricated ferrovitreous structure.[br]The son of a farmer, he had worked in gardens since boyhood and at the age of 21 was employed as Undergardener at the Horticultural Society Gardens in Chiswick, from where he went on to become Head Gardener for the Duke of Devonshire at Chatsworth. It was there that he developed his methods of glasshouse construction, culminating in the Great Conservatory of 1836–40, an immense structure some 277 ft (84.4 m) long, 123 ft (37.5 m) wide and 67 ft (20.4 m) high. Its framework was of iron and its roof of glass, with wood to contain the glass panels; it is now demolished. Paxton went on to landscape garden design, fountain and waterway engineering, the laying out of the model village of Edensor, and to play a part in railway and country house projects.The structure that made Paxton a household name was erected in Hyde Park, London, to house the Great Exhibition of 1851 and was aptly dubbed, by Punch, the Crystal Palace. The idea of holding an international exhibition for industry had been mooted in 1849 and was backed by Prince Albert and Henry Cole. The money for this was to be raised by public subscription and 245 designs were entered into a competition held in 1850; however, most of the concepts, received from many notable architects and engineers, were very costly and unsuitable, and none were accepted. That same year, Paxton published his scheme in the Illustrated London News and it was approved after it received over-whelming public support.Paxton's Crystal Palace, designed and erected in association with the engineers Fox and Henderson, was a prefabricated glasshouse of vast dimensions: it was 1,848 ft (563.3 m) long, 408 ft (124.4 m) wide and over 100 ft (30.5 m) high. It contained 3,300 iron columns, 2,150 girders. 24 miles (39 km) of guttering, 600,000 ft3 (17,000 m3) of timber and 900,000 ft2 (84,000 m) of sheet glass made by Chance Bros, of Birmingham. One of the chief reasons why it was accepted by the Royal Commission Committee was that it fulfilled the competition proviso that it should be capable of being erected quickly and subsequently dismantled and re-erected elsewhere. The Crystal Palace was to be erected at a cost of £79,800, much less than the other designs. Building began on 30 July 1850, with a labour force of some 2,000, and was completed on 31 March 1851. It was a landmark in construction at the time, for its size, speed of construction and its non-eclectic design, and, most of all, as the first great prefabricated building: parts were standardized and made in quantity, and were assembled on site. The exhibition was opened by Queen Victoria on 1 May 1851 and had received six million visitors when it closed on 11 October. The building was dismantled in 1852 and reassembled, with variations in design, at Sydenham in south London, where it remained until its spectacular conflagration in 1936.[br]Principal Honours and DistinctionsKnighted 1851. MP for Coventry 1854–65. Fellow Linnaean Society 1853; Horticultural Society 1826. Order of St Vladimir, Russia, 1844.Further ReadingP.Beaver, 1986, The Crystal Palace: A Portrait of Victorian Enterprise, Phillimore. George F.Chadwick, 1961, Works of Sir Joseph Paxton 1803–1865, Architectural Press.DY -
17 Smith, Oberlin
[br]b. 22 March 1840 Cincinnati, Ohio, USAd. 18 July 1926[br]American mechanical engineer, pioneer in experiments with magnetic recording.[br]Of English descent, Smith embarked on an education in mechanical engineering, graduating from West Jersey Academy, Bridgeton, New Jersey, in 1859. In 1863 he established a machine shop in Bridgeton, New Jersey, that became the Ferracute Machine Company in 1877, eventually specializing in the manufacture of presses for metalworking. He seems to have subscribed to design principles considered modern even in the 1990s, "always giving attention to the development of artistic form in combination with simplicity, and with massive strength where required" (bibliographic reference below). He was successful in his business, and developed and patented a large number of mechanical constructions.Inspired by the advent of the phonograph of Edison, in 1878 Smith obtained the tin-foil mechanical phonograph, analysed its shortcomings and performed some experiments in magnetic recording. He filed a caveat in the US Patent Office in order to be protected while he "reduced the invention to practice". However, he did not follow this trail. When there was renewed interest in practical sound recording and reproduction in 1888 (the constructions of Berliner and Bell \& Tainter), Smith published an account of his experiments in the journal Electrical World. In a corrective letter three weeks later it is clear that he was aware of the physical requirements for the interaction between magnetic coil and magnetic medium, but his publications also indicate that he did not as such obtain reproduction of recorded sound.Smith did not try to develop magnetic recording, but he felt it imperative that he be given credit for conceiving the idea of it. When accounts of Valdemar Poulsen's work were published in 1900, Smith attempted to prove some rights in the invention in the US Patent Office, but to no avail.He was a highly respected member of both his community and engineering societies, and in later life became interested in the anti-slavery cause that had also been close to the heart of his parents, as well as in the YMCA movement and in women's suffrage.[br]BibliographyApart from numerous technical papers, he wrote the book Press Working of Metals, 1896. His accounts on the magnetic recording experiments were "Some possible forms of phonograph", Electrical World (8 September 1888): 161 ff, and "Letter to the Editor", Electrical World (29 September 1888): 179.Further ReadingF.K.Engel, 1990, Documents on the Invention of Magnetic Recording in 1878, New York: Audio Engineering Society, Reprint no. 2,914 (G2) (a good overview of the material collected by the Oberlin Smith Society, Bridgeton, New Jersey, in particular as regards the recording experiments; it is here that it is doubted that Valdemar Poulsen developed his ideas independently).GB-N -
18 Issigonis, Sir Alexander Arnold Constantine (Alec)
[br]b. 18 November 1906 Smyrna (now Izmir), Turkeyd. 2 October 1988 Birmingham, England[br]British automobile designer whose work included the Morris Minor and the Mini series.[br]His father was of Greek descent but was a naturalized British subject in Turkey who ran a marine engineering business. After the First World War, the British in Turkey were evacuated by the Royal Navy, the Issigonis family among them. His father died en route in Malta, but the rest of the family arrived in England in 1922. Alec studied engineering at Battersea Polytechnic for three years and in 1928 was employed as a draughtsman by a firm of consulting engineers in Victoria Street who were working on a form of automatic transmission. He had occasion to travel frequently in the Midlands at this time and visited many factories in the automobile industry. He was offered a job in the drawing office at Humber and lived for a couple of years in Kenilworth. While there he met Robert Boyle, Chief Engineer of Morris Motors (see Morris, William Richard), who offered him a job at Cowley. There he worked at first on the design of independent front suspension. At Morris Motors, he designed the Morris Minor, which entered production in 1948 and continued to be manufactured until 1971. Issigonis disliked mergers, and after the merger of Morris with Austin to form the British Motor Corporation (BMC) he left to join Alvis in 1952. The car he designed there, a V8 saloon, was built as a prototype but was never put into production. Following his return to BMC to become Technical Director in 1955, his most celebrated design was the Mini series, which entered production in 1959. This was a radically new concept: it was unique for its combination of a transversely mounted engine in unit with the gearbox, front wheel drive and rubber suspension system. This suspension system, designed in cooperation with Alex Moulton, was also a fundamental innovation, developed from the system designed by Moulton for the earlier Alvis prototype. Issigonis remained as Technical Director of BMC until his retirement.[br]Further ReadingPeter King, 1989, The Motor Men. Pioneers of the British Motor Industry, London: Quiller Press.IMcNBiographical history of technology > Issigonis, Sir Alexander Arnold Constantine (Alec)
-
19 Hamilton, Harold Lee (Hal)
[br]b. 14 June 1890 Little Shasta, California, USAd. 3 May 1969 California, USA[br]American pioneer of diesel rail traction.[br]Orphaned as a child, Hamilton went to work for Southern Pacific Railroad in his teens, and then worked for several other companies. In his spare time he learned mathematics and physics from a retired professor. In 1911 he joined the White Motor Company, makers of road motor vehicles in Denver, Colorado, where he had gone to recuperate from malaria. He remained there until 1922, apart from an eighteenth-month break for war service.Upon his return from war service, Hamilton found White selling petrol-engined railbuses with mechanical transmission, based on road vehicles, to railways. He noted that they were not robust enough and that the success of petrol railcars with electric transmission, built by General Electric since 1906, was limited as they were complex to drive and maintain. In 1922 Hamilton formed, and became President of, the Electro- Motive Engineering Corporation (later Electro-Motive Corporation) to design and produce petrol-electric rail cars. Needing an engine larger than those used in road vehicles, yet lighter and faster than marine engines, he approached the Win ton Engine Company to develop a suitable engine; in addition, General Electric provided electric transmission with a simplified control system. Using these components, Hamilton arranged for his petrol-electric railcars to be built by the St Louis Car Company, with the first being completed in 1924. It was the beginning of a highly successful series. Fuel costs were lower than for steam trains and initial costs were kept down by using standardized vehicles instead of designing for individual railways. Maintenance costs were minimized because Electro-Motive kept stocks of spare parts and supplied replacement units when necessary. As more powerful, 800 hp (600 kW) railcars were produced, railways tended to use them to haul trailer vehicles, although that practice reduced the fuel saving. By the end of the decade Electro-Motive needed engines more powerful still and therefore had to use cheap fuel. Diesel engines of the period, such as those that Winton had made for some years, were too heavy in relation to their power, and too slow and sluggish for rail use. Their fuel-injection system was erratic and insufficiently robust and Hamilton concluded that a separate injector was needed for each cylinder.In 1930 Electro-Motive Corporation and Winton were acquired by General Motors in pursuance of their aim to develop a diesel engine suitable for rail traction, with the use of unit fuel injectors; Hamilton retained his position as President. At this time, industrial depression had combined with road and air competition to undermine railway-passenger business, and Ralph Budd, President of the Chicago, Burlington \& Quincy Railroad, thought that traffic could be recovered by way of high-speed, luxury motor trains; hence the Pioneer Zephyr was built for the Burlington. This comprised a 600 hp (450 kW), lightweight, two-stroke, diesel engine developed by General Motors (model 201 A), with electric transmission, that powered a streamlined train of three articulated coaches. This train demonstrated its powers on 26 May 1934 by running non-stop from Denver to Chicago, a distance of 1,015 miles (1,635 km), in 13 hours and 6 minutes, when the fastest steam schedule was 26 hours. Hamilton and Budd were among those on board the train, and it ushered in an era of high-speed diesel trains in the USA. By then Hamilton, with General Motors backing, was planning to use the lightweight engine to power diesel-electric locomotives. Their layout was derived not from steam locomotives, but from the standard American boxcar. The power plant was mounted within the body and powered the bogies, and driver's cabs were at each end. Two 900 hp (670 kW) engines were mounted in a single car to become an 1,800 hp (l,340 kW) locomotive, which could be operated in multiple by a single driver to form a 3,600 hp (2,680 kW) locomotive. To keep costs down, standard locomotives could be mass-produced rather than needing individual designs for each railway, as with steam locomotives. Two units of this type were completed in 1935 and sent on trial throughout much of the USA. They were able to match steam locomotive performance, with considerable economies: fuel costs alone were halved and there was much less wear on the track. In the same year, Electro-Motive began manufacturing diesel-electrie locomotives at La Grange, Illinois, with design modifications: the driver was placed high up above a projecting nose, which improved visibility and provided protection in the event of collision on unguarded level crossings; six-wheeled bogies were introduced, to reduce axle loading and improve stability. The first production passenger locomotives emerged from La Grange in 1937, and by early 1939 seventy units were in service. Meanwhile, improved engines had been developed and were being made at La Grange, and late in 1939 a prototype, four-unit, 5,400 hp (4,000 kW) diesel-electric locomotive for freight trains was produced and sent out on test from coast to coast; production versions appeared late in 1940. After an interval from 1941 to 1943, when Electro-Motive produced diesel engines for military and naval use, locomotive production resumed in quantity in 1944, and within a few years diesel power replaced steam on most railways in the USA.Hal Hamilton remained President of Electro-Motive Corporation until 1942, when it became a division of General Motors, of which he became Vice-President.[br]Further ReadingP.M.Reck, 1948, On Time: The History of the Electro-Motive Division of General Motors Corporation, La Grange, Ill.: General Motors (describes Hamilton's career).PJGRBiographical history of technology > Hamilton, Harold Lee (Hal)
-
20 Brunel, Isambard Kingdom
SUBJECT AREA: Civil engineering, Land transport, Mechanical, pneumatic and hydraulic engineering, Ports and shipping, Public utilities, Railways and locomotives[br]b. 9 April 1806 Portsea, Hampshire, Englandd. 15 September 1859 18 Duke Street, St James's, London, England[br]English civil and mechanical engineer.[br]The son of Marc Isambard Brunel and Sophia Kingdom, he was educated at a private boarding-school in Hove. At the age of 14 he went to the College of Caen and then to the Lycée Henri-Quatre in Paris, after which he was apprenticed to Louis Breguet. In 1822 he returned from France and started working in his father's office, while spending much of his time at the works of Maudslay, Sons \& Field.From 1825 to 1828 he worked under his father on the construction of the latter's Thames Tunnel, occupying the position of Engineer-in-Charge, exhibiting great courage and presence of mind in the emergencies which occurred not infrequently. These culminated in January 1828 in the flooding of the tunnel and work was suspended for seven years. For the next five years the young engineer made abortive attempts to find a suitable outlet for his talents, but to little avail. Eventually, in 1831, his design for a suspension bridge over the River Avon at Clifton Gorge was accepted and he was appointed Engineer. (The bridge was eventually finished five years after Brunel's death, as a memorial to him, the delay being due to inadequate financing.) He next planned and supervised improvements to the Bristol docks. In March 1833 he was appointed Engineer of the Bristol Railway, later called the Great Western Railway. He immediately started to survey the route between London and Bristol that was completed by late August that year. On 5 July 1836 he married Mary Horsley and settled into 18 Duke Street, Westminster, London, where he also had his office. Work on the Bristol Railway started in 1836. The foundation stone of the Clifton Suspension Bridge was laid the same year. Whereas George Stephenson had based his standard railway gauge as 4 ft 8½ in (1.44 m), that or a similar gauge being usual for colliery wagonways in the Newcastle area, Brunel adopted the broader gauge of 7 ft (2.13 m). The first stretch of the line, from Paddington to Maidenhead, was opened to traffic on 4 June 1838, and the whole line from London to Bristol was opened in June 1841. The continuation of the line through to Exeter was completed and opened on 1 May 1844. The normal time for the 194-mile (312 km) run from Paddington to Exeter was 5 hours, at an average speed of 38.8 mph (62.4 km/h) including stops. The Great Western line included the Box Tunnel, the longest tunnel to that date at nearly two miles (3.2 km).Brunel was the engineer of most of the railways in the West Country, in South Wales and much of Southern Ireland. As railway networks developed, the frequent break of gauge became more of a problem and on 9 July 1845 a Royal Commission was appointed to look into it. In spite of comparative tests, run between Paddington-Didcot and Darlington-York, which showed in favour of Brunel's arrangement, the enquiry ruled in favour of the narrow gauge, 274 miles (441 km) of the former having been built against 1,901 miles (3,059 km) of the latter to that date. The Gauge Act of 1846 forbade the building of any further railways in Britain to any gauge other than 4 ft 8 1/2 in (1.44 m).The existence of long and severe gradients on the South Devon Railway led to Brunel's adoption of the atmospheric railway developed by Samuel Clegg and later by the Samuda brothers. In this a pipe of 9 in. (23 cm) or more in diameter was laid between the rails, along the top of which ran a continuous hinged flap of leather backed with iron. At intervals of about 3 miles (4.8 km) were pumping stations to exhaust the pipe. Much trouble was experienced with the flap valve and its lubrication—freezing of the leather in winter, the lubricant being sucked into the pipe or eaten by rats at other times—and the experiment was abandoned at considerable cost.Brunel is to be remembered for his two great West Country tubular bridges, the Chepstow and the Tamar Bridge at Saltash, with the latter opened in May 1859, having two main spans of 465 ft (142 m) and a central pier extending 80 ft (24 m) below high water mark and allowing 100 ft (30 m) of headroom above the same. His timber viaducts throughout Devon and Cornwall became a feature of the landscape. The line was extended ultimately to Penzance.As early as 1835 Brunel had the idea of extending the line westwards across the Atlantic from Bristol to New York by means of a steamship. In 1836 building commenced and the hull left Bristol in July 1837 for fitting out at Wapping. On 31 March 1838 the ship left again for Bristol but the boiler lagging caught fire and Brunel was injured in the subsequent confusion. On 8 April the ship set sail for New York (under steam), its rival, the 703-ton Sirius, having left four days earlier. The 1,340-ton Great Western arrived only a few hours after the Sirius. The hull was of wood, and was copper-sheathed. In 1838 Brunel planned a larger ship, some 3,000 tons, the Great Britain, which was to have an iron hull.The Great Britain was screwdriven and was launched on 19 July 1843,289 ft (88 m) long by 51 ft (15.5 m) at its widest. The ship's first voyage, from Liverpool to New York, began on 26 August 1845. In 1846 it ran aground in Dundrum Bay, County Down, and was later sold for use on the Australian run, on which it sailed no fewer than thirty-two times in twenty-three years, also serving as a troop-ship in the Crimean War. During this war, Brunel designed a 1,000-bed hospital which was shipped out to Renkioi ready for assembly and complete with shower-baths and vapour-baths with printed instructions on how to use them, beds and bedding and water closets with a supply of toilet paper! Brunel's last, largest and most extravagantly conceived ship was the Great Leviathan, eventually named The Great Eastern, which had a double-skinned iron hull, together with both paddles and screw propeller. Brunel designed the ship to carry sufficient coal for the round trip to Australia without refuelling, thus saving the need for and the cost of bunkering, as there were then few bunkering ports throughout the world. The ship's construction was started by John Scott Russell in his yard at Millwall on the Thames, but the building was completed by Brunel due to Russell's bankruptcy in 1856. The hull of the huge vessel was laid down so as to be launched sideways into the river and then to be floated on the tide. Brunel's plan for hydraulic launching gear had been turned down by the directors on the grounds of cost, an economy that proved false in the event. The sideways launch with over 4,000 tons of hydraulic power together with steam winches and floating tugs on the river took over two months, from 3 November 1857 until 13 January 1858. The ship was 680 ft (207 m) long, 83 ft (25 m) beam and 58 ft (18 m) deep; the screw was 24 ft (7.3 m) in diameter and paddles 60 ft (18.3 m) in diameter. Its displacement was 32,000 tons (32,500 tonnes).The strain of overwork and the huge responsibilities that lay on Brunel began to tell. He was diagnosed as suffering from Bright's disease, or nephritis, and spent the winter travelling in the Mediterranean and Egypt, returning to England in May 1859. On 5 September he suffered a stroke which left him partially paralysed, and he died ten days later at his Duke Street home.[br]Further ReadingL.T.C.Rolt, 1957, Isambard Kingdom Brunel, London: Longmans Green. J.Dugan, 1953, The Great Iron Ship, Hamish Hamilton.IMcNBiographical history of technology > Brunel, Isambard Kingdom
См. также в других словарях:
NASA RealWorld-InWorld Engineering Design Challenge — encourages students in grades 7–12 to explore and to build skills for successful careers in science, technology, engineering, and math (STEM fields) through two phases of project based learning and team competition. The RealWorld InWorld… … Wikipedia
Chicago Engineering Design Team — (EDT) is an engineering and robotics organization made up of University of Illinois at Chicago (UIC) engineering students. It was founded in 2000. EDT is a team of electrical, software, and mechanical engineers who aim to bring engineering to the … Wikipedia
Design for assembly — (DFA) is a process by which products are designed with ease of assembly in mind. If a product contains fewer parts it will take less time to assemble, thereby reducing assembly costs. In addition, if the parts are provided with features which… … Wikipedia
Design for Assembly — is a process by which products are designed with ease of assembly in mind. If a product contains fewer parts it will take less time to assemble, thereby reducing assembly costs. In addition, if the parts are provided with features which make it… … Wikipedia
Design thinking — refers to the methods and processes for investigating ill defined problems, acquiring information, analyzing knowledge, and positing solutions in the design and planning fields. As a style of thinking, it is generally considered the ability to… … Wikipedia
Design methods — is a broad area that focuses on: Divergence – Exploring possibilities and constraints of inherited situations by applying critical thinking through qualitative and quantitative research methods to create new understanding (problem space) toward… … Wikipedia
Design closure — is the process by which a VLSI design is modified from its initial description to meet a growing list of design constraints and objectives. Every step in the IC design (such as static timing analysis, placement, routing, and so on) is already… … Wikipedia
Engineering — The Watt steam engine, a major driver in the Industrial Revolution, underscores the importance of engineering in modern history. This model is on display at the main building of the ETSIIM in Madrid, Spain. Engineering is the discipline, art,… … Wikipedia
Design rationale — A Decision Based Design Structure, which spans the areas of Engineering Design, Design Rationale and Decision Analysis. A Design Rationale is an explicit documentation of the reasons behind decisions made when designing a system or artifact. As… … Wikipedia
Design Rationale — In the survey on design rationale (DR) for software engineering [Jarczyk, Loffler Shipman, Design Rationale for Software Engineering: A Survey] the authors give a very clear definition to design rationale, it is “the explicit listing of decisions … Wikipedia
Design knowledge — There is a large body of knowledge that designers call upon and use during the design process to match the ever increasing complexity of design problems.[1] Design knowledge can be classified into two categories [2]: product knowledge and design… … Wikipedia